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E�ects of the Jacobian evaluation on Newton’s solution
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SUMMARY

Newton’s method is developed for solving the 2-D Euler equations. The Euler equations are dis-
cretized using a �nite-volume method with upwind �ux splitting schemes. Both analytical and numerical
methods are used for Jacobian calculations. Although the numerical method has the advantage of keep-
ing the Jacobian consistent with the numerical residual vector and avoiding extremely complex an-
alytical di�erentiations, it may have accuracy problems and need longer execution time. In order to
improve the accuracy of numerical Jacobians, detailed error analyses are performed. Results show that
the �nite-di�erence perturbation magnitude and computer precision are the most important parameters
that a�ect the accuracy of numerical Jacobians. A method is developed for calculating an optimal
perturbation magnitude that can minimize the error in numerical Jacobians. The accuracy of the numer-
ical Jacobians is improved signi�cantly by using the optimal perturbation magnitude. The e�ects of the
accuracy of numerical Jacobians on the convergence of the �ow solver are also investigated. In order to
reduce the execution time for numerical Jacobian evaluation, �ux vectors with perturbed �ow variables
are calculated only for neighbouring cells. A sparse matrix solver that is based on LU factorization is
used. E�ects of di�erent �ux splitting methods and higher-order discretizations on the performance of
the solver are analysed. Copyright ? 2005 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Newton’smethod is a widely used technique for �nding the solution of a non-linear system of
algebraic equations and providing quadratic convergence. Considering the �ow domain as a
whole makes the Newton’s method stable; however, a good initial guess may still be required
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for convergence. Newton’s method also requires the calculation of a Jacobian matrix that may
be very large depending on the CFD model used. Although this method has been available for
a long time, the high storage and factorization costs of large Jacobian matrices have limited the
method’s use. The recent development of very powerful computers and e�cient matrix solvers
has now made Newton’s method more applicable for the solution of large systems of equations.
Analytical or numerical methods can be used to calculate the Jacobian matrix. In the analytical
method, the Jacobian matrix entries can be derived accurately. However, as the discretization
of the �uid �ow equations increases in complexity, this derivation becomes more di�cult.
Compared to the analytical method, numerical calculations of the Jacobians are much easier.
Even for complex discretizations, numerical Jacobians can be easily evaluated. However, the
numerical method may have accuracy problems and may need longer computation time. Thus,
accurate and fast calculations of numerical Jacobians are very important for the performance
of Newton’s method.
In order to improve the solution of the Jacobian matrix, Wigton [1] described a technique

called nested dissection node reordering. This technique signi�cantly reduces storage require-
ments and factorization time. Similar techniques are included in today’s advanced sparse
matrix solvers like the one used in this study. To remove the di�culties in analytical di�er-
entiations, Wigton used the symbolic manipulation expert system MACSYMA. Venkatakrish-
nan [2] used nested dissection with advanced sparse matrix inversion routines, and introduced
a diagonal term modi�cation that improves convergence even from a poor initial guess. This
modi�cation is also applied in this study. Later, Venkatakrishnan [3] implemented the diag-
onal term modi�cation for preconditioned conjugate gradient methods. Orkwis [4] compared
the performance of several Newton’s and quasi-Newton’s method solvers and showed that
quasi-Newton’s methods could be more e�cient than the exact Newton’s method. Like Wig-
ton, Orkwis used the symbolic manipulation system, MACSYMA, to calculate analytical Ja-
cobian matrix entries. Orkwis noted that these Jacobians took approximately 40 000 lines of
Fortran code to implement, some of which were not vectorizable. In order to improve the
performance of quasi-Newton’s methods, Orkwis employed diagonal term modi�cation and
Jacobian matrix freezing.
Whit�eld and Taylor [5] presented one of the �rst implementations of numerical Jacobian

calculation in a Newton-relaxation solver. In their study, a high-order �ux di�erence splitting
scheme was used. Since obtaining the Jacobian matrix analytically is impractical for such a dis-
cretization, they used a numerical method for Jacobian evaluation. Later, Vanden and Whit�eld
[6] applied direct and iterative methods to solve 3-D Euler equations. In the solution of block-
tridiagonal systems, they used LU factorization followed by forward or backward substitution.
Instead of a conventional matrix structure, a diagonal plane structure was presented to de-
crease the memory requirement. Orkwis and Vanden [7] compared numerical and analytical
approaches for forming the Jacobian matrix and noted that the numerical approach is simpler
and more practical than the analytical approach. They explained di�erentiation procedures
for deriving the analytical and numerical Jacobians in detail. Aberle and Shumlak [8] have
recently compared the accuracy, convergence, and computation time of the analytical and nu-
merical methods. They have found that accuracy and convergence are nearly identical in the
two methods, while analytical formulation requires less execution time.
One of the objectives of this study is to analyse the source of error in numerical Jacobians

and to improve the performance of numerical Jacobian evaluation in terms of accuracy and
execution time. The other objective is to investigate the e�ects of the accuracy of Jacobians on
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the convergence of Newton’s solver. In this paper, Newton’s method is �rst introduced; and
then, the numerical and analytical calculations of the Jacobians are explained. After discussing
the structure of the Jacobian matrix used in Newton’s method, the solution strategies of the
Jacobian matrix are presented. Next, errors in numerical Jacobians are analysed. The e�ects of
�nite-di�erence perturbation magnitude and computer precision on the accuracy of numerical
Jacobians are investigated. To �nd an optimal �nite-di�erence perturbation magnitude with
minimum error, a method is developed and veri�ed using a trial–error procedure. Finally,
the convergence and CPU time performances of the developed �ow solver are compared for
di�erent �ux splitting schemes and higher-order discretizations.

2. FLOW MODEL

The steady, 2-D Euler equations in generalized coordinates, written in non-dimensional form
are

@F̂(Ŵ )
@�

+
@Ĝ(Ŵ )
@�

=0 (1)

Here, the conserved �ow variable vector Ŵ , the �ux vectors F̂ and Ĝ are

Ŵ = J−1

⎡
⎢⎢⎢⎢⎢⎢⎣

�

�u
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�et

⎤
⎥⎥⎥⎥⎥⎥⎦
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⎤
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; Ĝ= J−1

⎡
⎢⎢⎢⎢⎢⎢⎣

�V

�uV + �xp

�vV + �yp

(�et + p)V

⎤
⎥⎥⎥⎥⎥⎥⎦

(2)

where � is the density, u and v are the components of the velocity vector, p is the pressure, et
is the total energy per unit volume, and U and V are the contravariant velocity components.
In Equation (2), J is the coordinate transformation Jacobian, �, and � are the curvilinear
coordinates, and �x; �y; �x; �y are the transformation metrics.
The di�erential form of the steady 2-D Euler equations given in Equation (1) can be

discretized for an arbitrary quadrilateral control volume as

��F̂
��

+
��Ĝ
��

=0 (3)

Writing the spatial derivatives of the �ux vectors conservatively as �ux balances across the
cell, Equation (3) can then be written as

(F̂i+1=2; j − F̂i−1=2; j) + (Ĝi; j+1=2 − Ĝi; j−1=2)=0 (4)

where i± 1=2 and j± 1=2 denote cell interfaces. The �uxes are calculated at the cell faces by
using the �ow variables interpolated from the cell centre values according the order of spatial
discretization.
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2.1. Flux splitting

The Euler equations have convective �uxes that represent the inviscid phenomena. Although
central di�erence schemes are easy to implement to calculate the �uxes, they require arti�cial
dissipation. Another approach is to use the upwind schemes, which require no explicit arti�cial
dissipation. In this study, upwind �ux splitting schemes are used for the spatial discretization
of the �ux vector.
In Newton’s �ow solver, any �ux scheme could be employed in the discretized residual and

Jacobian calculations. Steger and Warming [9] showed that, using wave splitting, convective
�ux vectors can be split into two parts according to the sign of the eigenvalues of the �ux
Jacobian. Implementing this splitting procedure, the upwind discretized form of the steady,
2-D Euler equations can be written as

[F̂+(Ŵ−
i+1=2; j) + F̂

−(Ŵ+
i+1=2; j)]− [F̂+(Ŵ−

i−1=2; j) + F̂
−(Ŵ+

i−1=2; j)]

+[Ĝ+(Ŵ−
i; j+1=2) + Ĝ

−(Ŵ+
i; j+1=2)]− [Ĝ+(Ŵ−

i; j−1=2) + Ĝ
−(Ŵ+

i; j−1=2)]=0 (5)

Van-Leer [10] introduced a di�erent method for splitting �uxes, in which the �ux vector is
a function of the contravariant Mach number. Roe [11] extended the �ux splitting idea by
considering the Riemann problem of discontinuous �ow variables, and used constant Jacobian
matrices to de�ne the �ux vectors as functions of Roe-averaged �ow variables.

2.2. Higher-order schemes with limiters

The interface �uxes given in Equation (5) require the �ow variables on cell faces, Ŵ±
i±1=2; j

or Ŵ±
i; j±1=2. A zeroth-order interpolation can be realized easily as follows:

Ŵ−
i+1=2 = Ŵi Ŵ+

i+1=2 = Ŵi+1 (6)

For higher-order spatial discretizations, these conserved variables are determined from an
upwind-biased interpolation of the primitive variables at cell centres. This is called MUSCL
(monotonic upstream-centred scheme for conservation laws) [12] and its general form can be
written as

Ŵ−
i+1=2 = Ŵi +

{
�
4
[(1− �)∇+ (1 + �)�]

}
i

Ŵ+
i+1=2 = Ŵi+1 −

{
�
4
[(1 + �)∇+ (1− �)�]

}
i+1

(7)

where the di�erence operators are

�i= Ŵi+1 − Ŵi ∇i= Ŵi − Ŵi−1 (8)

The order of discretization and the type of di�erencing are determined by assigning di�erent
values to � and �. In higher-order spatial discretizations, numerical oscillations are expected
where large �ow gradients occur. In order to control and reduce the order of stencil in these
regions, �ux limiters can be used. The �ux limiter � can be written as a function of the
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di�erence ratio r, which can be de�ned as

ri=
�i + ∈
∇i + ∈ (9)

where ∈ is a small number to prevent division by zero in the zero gradient �ow regions.
Then, Equation (7) can be rewritten as

Ŵ−
i+1=2 = Ŵi +

{
�(r)
4
[(1− �)∇+ (1 + �)�]

}
i

Ŵ+
i+1=2 = Ŵi+1 −

{
�(1=r)
4

[(1 + �)∇+ (1− �)�]
}
i+1

(10)

In this study, a Van Albada limiter is used and the limiter function is de�ned as

�(r)=
r + r2

1 + r2
(11)

In the regions of small gradient �ows, the value of � approaches one and the algorithm
actually uses no limiter. On the contrary, in the regions of very large gradient �ows, its value
approaches zero and the algorithm reduces the interpolation to the �rst order.

3. SOLUTION METHOD

The system of non-linear equations of discretized governing equations can be written in the
form

R̂(Ŵ )=0 (12)

where R̂ is the residual vector of the system. Then, Newton’s method can be formulated as
(
@R̂
@Ŵ

)n
�Ŵ n=−R(Ŵ n) (13)

The increment �Ŵ at the nth iteration is found by solving the above system. The new values
of the �ow variable vector Ŵ at the (n+ 1)th iteration can be calculated as

Ŵ n+1 = Ŵ n +�Ŵ n (14)

In Newton’s solver, the Jacobian matrix has to be evaluated. The Jacobian matrix elements
are the derivatives of the residual vector with respect to the �ow variables vector. To inves-
tigate the accuracy of the numerical Jacobians, both the numerical and analytical Jacobians
are calculated. In the study, analytical Jacobians are derived only for the �rst-order Steger–
Warming discretization. The accuracy of numerical Jacobians is investigated by comparing
the numerical and analytical Jacobians with the same discretization.
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3.1. Analytical Jacobian derivation

It is obvious that the calculation of �ux and residual Jacobians by manual di�erentiation is
time-consuming and likely to be erroneous. However, for Euler �uxes with the �rst-order
Steger–Warming �ux splitting discretization, this procedure becomes somewhat feasible and
can be calculated by hand [13]. The residual Jacobians simply represent the combinations of
�ux Jacobians. Using Equation (5), the residual vector can be de�ned as

R̂i; j = [F̂+(Ŵi; j) + F̂−(Ŵi+1; j)]− [F̂+(Ŵi−1; j) + F̂−(Ŵi; j)]

+ [Ĝ+(Ŵi; j) + Ĝ−(Ŵi; j+1)]− [Ĝ+(Ŵi; j−1) + Ĝ−(Ŵi; j)] (15)

From the above equation, the residual Jacobians can be represented as follows:

@R̂i; j
@Ŵi; j

= Â+i; j − Â−
i; j + B̂

+
i; j − B̂−

i; j

@R̂i; j
@Ŵi+1; j

= Â−
i+1; j

@R̂i; j
@Ŵi; j+1

= B̂−
i; j+1

@R̂i; j
@Ŵi−1; j

=−Â+i−1; j
@R̂i; j
@Ŵi; j−1

=−B̂+i; j−1
(16)

where Â represents the Jacobian matrices of �-directional �ux vector F̂ , and B̂ represents the
Jacobian matrices of �-directional �ux vector Ĝ.
The main advantage of the analytical method is that the residual Jacobians can be calculated

accurately. The order of error in the analytical method can be as small as the round-o� error.
Although the analytical method requires code development, running an analytical code is very
fast. However, as the complexity of discretized residual equations increases, the derivation of
the analytical Jacobian becomes more di�cult and therefore, the numerical method should be
considered for Jacobian calculation.

3.2. Numerical Jacobian calculation

The best alternative for analytical Jacobian evaluation is to compute the Jacobians numer-
ically as accurately as possible. Using a small number as the �nite-di�erence perturbation
magnitude �, the numerical Jacobians can be calculated by one-sided derivatives as follows
[14]:

@R̂i
@Ŵj

=
Ri(Ŵ + �ej)− Ri(Ŵ )

�
(17)

where ej is the jth unit vector. In this vector, the value of the jth component is one, and the
values of all other components are zero.
The value of � does not have to be positive. It is obvious that by employing a positive �,

the derivative will be forward di�erenced, while with a negative �, a backward di�erenced
derivative can be obtained. The choice of the sign of the �nite-di�erence perturbation magni-
tude becomes very important in some cases. For example, in the Steger–Warming scheme, the
�ux vectors are non-di�erentiable where the eigenvalues of �ux Jacobians change sign. The
perturbation of the �ow variables may change the sign of the eigenvalues, and as a result,
large di�erences between analytical and numerical Jacobians may be observed. In order to
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prevent this, the e�ect of perturbation on the sign of the eigenvalues must be checked, and
the backward or forward di�erencing should be implemented accordingly.
In the numerical method, Jacobian evaluation does not require the large coding e�ort

needed in the analytical method. The same residual discretization is used for both the original
and perturbed �ow variables. This reuse of the same code is one of the big advantages of the
numerical approach. Moreover, for cases in which the analytical Jacobians are too di�cult to
obtain, such as in higher-order discretizations, numerical Jacobians can be obtained without
any di�culty. Two main disadvantages of the numerical method are the accuracy problem
and long computation time. The accuracy of the numerical Jacobians is related to the �nite-
di�erence perturbation magnitude. Using an optimal perturbation magnitude that produces the
minimum error may improve the accuracy of numerical Jacobians. The main reason for having
a long computation time is the need for calculating the residual vector with each perturbed
�ow variable in the whole domain. For a given cell, the residual is only a function of �ow
variables in that cell and the neighbouring cells according to the discretization used. In or-
der to reduce computation time, the perturbed residual is computed only with �ow variables
in these cells. For �rst-order discretizations, in addition to the given cell, four neighbour-
ing cells are used. Considering four �ow variables in each cell, 20 perturbed residual vector
evaluations are required in the numerical Jacobian calculation for the given cell. In second-
order discretizations, using eight neighbouring cells in addition to the given cell, 36 perturbed
residual vector evaluations are required. In this way, the numerical Jacobian evaluation method
may become faster although the speed of the analytical method may not be reached.

3.3. Matrix structure

The Jacobian matrix requires partial derivatives of every residual equation with respect to
every �ow variable. Fortunately, most of these derivatives are zero because of the fact that
the discretized residual equations only depend on local �ow variables. Although there is no
need to compute and store the zero elements of the Jacobian matrix, full matrix solvers
require the whole matrix to be constructed. The storage and solution costs of this type of
matrix structure are prohibitively expensive for large problems. Thus, storing only the non-
zero elements of the Jacobian matrix and employing a sparse matrix solver are very important
for improving the solver’s e�ciency.
The Jacobian matrix of the complete system is square, with dimensions equal to the total

number of �ow variables in the system. Considering the test case with a 65× 49 grid size,
the total number of variables exceeds ten thousand and the Jacobian matrix has hundreds of
millions of elements. For �rst-order upwind discretizations, a �ve-point stencil is required,
which produces a block diagonal matrix made up of �ve 4× 4-blocks. In second-order dis-
cretizations, a nine-point stencil is employed, which produces a block diagonal matrix made
up of nine 4× 4-block bands. Thus, all elements of the Jacobian matrix, except for these
block bands and the boundary entries, are zero.

3.4. Matrix solution strategies

In this study, the UMFPACK (unsymmetric-pattern multifrontal package) sparse matrix solver
package [15] is used in order to solve the linear system of equations. In this method, the full
matrix is converted into sparse storage mode and then factorized using a sequence of small
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dense frontal matrices by LU factorization. The usage of a sparse matrix solver increases the
e�ciency of the �ow solver signi�cantly.
In Newton’s method, the Jacobian matrix has to be recomputed and refactored at each

iteration, since the matrix is a non-linear function of the changing �ow variables. However,
great gains in e�ciency can be achieved by only computing and factoring the Jacobian matrix
once, and using this frozen Jacobian matrix for all subsequent iterations. In the early stages
of iterations, Newton’s method has a tendency to diverge, and freezing the Jacobian matrix
in these stages may not be a good choice. Once the high convergence rate is achieved, the
Jacobian matrix can be frozen. Even though freezing the Jacobian matrix may increase the
number of iterations, a great reduction in CPU time may be achieved.
Newton’s method requires a good initial guess for convergence. This is a considerable

drawback. In this study, �ow variables are initialized with their free-stream values, although
it may be a poor guess. Several ideas are available to modify Newton’s method to improve
stability. For example, a time-like term can be added to the diagonal of the Jacobian matrix to
make it more diagonally dominant [2]. Increased diagonal dominance leads to a more stable
linear solution. With the addition of a time-like term, the modi�ed Newton’s method becomes

(
1
�t
[I ] +

@R̂
@Ŵ

)n
�Ŵ n=−R(Ŵ n) (18)

As �t→∞, the original Newton’s method can be constructed. In the modi�ed Newton’s
method, a small initial value �t0 is chosen and a new value of �t can be obtained using
L2-norm of the residuals as

�tn=�t0
‖R(Ŵ 0)‖2
‖R(Ŵ n)‖2

(19)

In this study, to improve the convergence from free-stream initial conditions, the modi�ed
Newton’s method is used. For all calculations �t0 is taken as one, and the L2-norm is com-
puted including all the residuals in the domain. The convergence of this method is slow until
�t gets very large. However, the modi�cation in Newton’s method is useful in the early
stages of iterations. Later, the solution becomes more accurate, and the diagonal term addi-
tion may not be needed. The withdrawal of the diagonal term from the matrix at the proper
convergence level signi�cantly reduces the number of iterations and CPU time.

4. ACCURACY OF NUMERICAL JACOBIANS

4.1. Error analysis

In numerical Jacobian calculation, mainly two types of errors occur. These are truncation and
condition errors [16]. While truncation error is due to neglected terms in the Taylor’s series
expansion, condition error is associated with numerical noise and caused by loss of computer
precision.
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The �rst derivative of any function f(x) can be approximated as a forward di�erence for
some perturbation magnitude �:

�f(x)
�x

=
f(x + �)− f(x)

�
(20)

In this approximation, the truncation error due to the neglected terms in the Taylor series
expansion can be written as

ET (�)=
@2f(�)
@x2

�
2

(21)

where �=[x; x + �].
Because of computer precision, the exact value of the function f(x) and its computed value

f̃(x) can be di�erent due to round-o� error E(x):

f̃(x) =f(x) + E(x)

f̃(x + �) =f(x + �) + E(x + �)
(22)

The �rst derivative with computed function f̃(x) can be calculated as

�f̃(x)
�x

=
f̃(x + �)− f̃(x)

�
�f̃(x)
�x

=
f(x + �)− f(x)

�
+
E(x + �)− E(x)

�
�f̃(x)
�x

=
�f(x)
�x

+ EC(�)

(23)

where EC(�) is the condition error. Considering a bound of round-o� error ER = max{|E(x)|;
|E(x +�x)|}, the maximum of the condition error can be written as

EC(�)=
2ER
�

(24)

This bound of round-o� error can be considered the precision error, which depends on the
computer processor and compiler. The precision is de�ned according to the machine epsilon
�M, which is the smallest number that the computer can recognize. A reasonable estimate of
�M can be given as follows:

�M =
1
2m

such that 1+�M¿1 (25)

where m is the number of possible highest bits in the binary representation of the mantissa.
All the calculations of this study are realized on a 1:5GHz Pentium IV dual processor with

a compiler with single and double precision options. The machine epsilon �M values of this
compiler-computer con�guration are found according to Equation (25). For single precision
�M ∼= 3:0× 10−8, and for double precision �M ∼= 5:6× 10−17 values are reached.
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4.2. Optimal perturbation magnitude analysis

An optimization method is performed to �nd a perturbation magnitude with minimum error.
The total error in the numerical calculation of the �rst derivative of functionf(x) is simply
the sum of the truncation and condition errors:

ETOTAL(�)=
2ER
�
+
∣∣∣∣@2f(�)@x2

∣∣∣∣ �2 (26)

The total error is highly dependent on perturbation magnitude �. If the perturbation magnitude
is too small, the condition error dominates, and if the perturbation magnitude is too large,
the truncation error becomes more important. So, there must be an optimal value for the
perturbation magnitude that gives a minimum error.
The optimal perturbation magnitude can be estimated as the � value that makes the derivative

of Equation (26) zero:

@ETOTAL(�)
@�

=−2ER
�2

+
1
2

∣∣∣∣@2f(�)@x2

∣∣∣∣ =0 (27)

�OPT = 2

√√√√√ ER∣∣∣∣@2f(�)@x2

∣∣∣∣
(28)

The above equation requires the calculation of a second derivative and the bound of round-
o� error. In many cases, for the second derivative, a �nite-di�erence relation has to be em-
ployed, which also brings errors. The order of the second derivatives can be estimated as the
order of function values. Since the normalized equations are solved, the order of the �ow
variables is one. Actually, when the second derivatives of the residuals are calculated for the
whole �ow �eld using a �nite-di�erence relation in double precision, the L1-norm of the sec-
ond derivative is found to be around three. Hence, assuming the order of the second derivative
to be one may not introduce large errors. The bound of round-o� error is the precision error
and can be taken as the machine epsilon for both single and double precision cases. Taking
the second derivative as one, Equation (28) becomes

�OPT =2
√
�M (29)

In this study, the optimal value of the �nite-di�erence perturbation magnitude is calculated
using Equation (29). In the past, similar methods have been proposed to calculate the appro-
priate perturbation size for numerical Jacobian calculations [14, 17]. However, the studies on
the performance and the reliability of these methods are limited. One of the objectives of this
study is to evaluate the performance and the reliability of the present optimization method.
The performance of the optimization method is studied in Section 5. In this section, a trial–
error-like procedure is performed to validate the reliability of the optimization method. The
error in the numerical residual Jacobians is analysed for several �nite-di�erence perturbation
magnitudes. Both forward and backward di�erence schemes are used in numerical Jacobian
calculations. Computations are performed with both single and double precisions. The max-
imum and the average errors are obtained using L∞- and L1-norms of the errors between
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numerical and analytical residual Jacobians as

EMAX =

∥∥∥∥∥
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)
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@Ŵ
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)
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−
(
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@Ŵ

(Ŵ 0)

)
num

∥∥∥∥∥
1

(30)

4.3. Test case results

The accuracy of numerical Jacobians is studied for a �ow �eld around a 15◦ ramp geometry.
The free-stream Mach number, M∞ is 2. This geometry and �ow condition produce shock
waves which will be very suitable for studying the e�ects of high-�ow-gradients on the errors
in numerical Jacobians. A 65× 49 grid is used, as shown in Figure 1. The free-stream condi-
tion and geometry produce a supersonic �ow at the inlet and outlet. Thus, at the inlet, �ow
variables are initialized with their free-stream values, while at the outlet they are interpolated
from the inner values. Wall and symmetry boundary conditions are employed at the lower and
upper sides of the boundary. In this study, numerical and analytical Jacobians are calculated
and compared for the �rst-order Steger–Warming scheme. Both Jacobians are obtained from
an already converged solution whose Mach number contours are given in Figure 2.

Figure 1. 65× 49 grid for ramp geometry.
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Figure 2. Mach contours of converged solution.
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Figure 3. E�ect of perturbation magnitude on errors in numerical Jacobians: (a) single
precision; and (b) double precision.

With di�erent �nite-di�erence perturbation magnitudes, the change of maximum and aver-
age errors in numerical Jacobians is analysed. The numerical Jacobians are calculated using
both forward and backward di�erencing to investigate their e�ects. In order to understand
the e�ects of computer precision on the accuracy of numerical Jacobians, computations are
performed with both single and double precisions. Figure 3 shows the change of maximum
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Table I. Optimization method results for single and double precision.

Optimization method (�M)

Precision Precision error (�M) Second derivative �opt (�M)

Single 3:0× 10−8 1.0 3:5× 10−4

Double 5:6× 10−17 1.0 1:5× 10−8

Table II. Comparison of trial–error procedure and the optimization method
for single and double precisions.

Trial–error procedure Optimization method

Precision �opt (max. error) �opt (avg. error) �opt (�M)

Single 9:8× 10−4 6:4× 10−4 3:5× 10−4

Double 4:0× 10−8 4:0× 10−8 1:5× 10−8

and average errors with perturbation magnitude. It is observed that errors produced in nu-
merical Jacobians with forward and backward di�erence schemes are in the same order of
magnitude. Computations with double precision improve the accuracy of numerical Jacobians.
With double precision, the average error can be reduced to the order of 10−8. However, with
single precision the average error can be reduced to only an order of 10−4. Figure 3 shows
that error in numerical Jacobians is highly dependent on �nite-di�erence perturbation magni-
tude, and there is an optimal perturbation value that gives the minimum error. As explained in
Section 3.2, if the perturbation magnitude is too small, the condition error increases. The value
of optimal perturbation can be read as around 4× 10−8 for double precision and 7× 10−4 for
single precision.
The accuracy of the optimization method for �nding a perturbation magnitude with mini-

mum error is veri�ed. In the method, the values of the second derivatives are taken as one,
and Equation (29) is used to �nd the optimal perturbation magnitude. Computations are per-
formed with both single and double precisions, and the results are given in Table I. The
optimal values are calculated in the order of 10−4 and 10−8 for single and double precisions,
respectively. The optimal perturbation magnitudes, taken from Figure 3 and calculated from
the optimization method, are compared in Table II. Results show that the optimization method
can accurately predict the optimal perturbation magnitude. Using Equation (26) with the
perturbation magnitudes found by using the optimization method, the minimum errors are
calculated in the order of 10−4 and 10−8 for single and double precisions. These values
totally agree with the corresponding error values read from Figure 3.
The change of optimal perturbation magnitude with grid size is also studied. Figure 4 shows

the change of error with perturbation magnitude for three di�erent grid sizes: 33× 25; 65× 49
and 129× 97. In numerical Jacobian calculations, forward di�erencing and double precision
are used. Results show that an error in numerical Jacobians slightly decreases as the grid
gets �ner. However, as the grid size varies, no change in optimal perturbation magnitude is
observed. The CPU times to evaluate analytical and numerical Jacobians are also compared
for di�erent grid sizes. The ratios of CPU time for numerical Jacobian evaluations to CPU
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Figure 4. E�ect of perturbation magnitude on errors in numerical Jacobians for di�erent grid size.

time for analytical Jacobian evaluations are approximately 2.5, 5 and 10 for 33× 25; 65× 49,
and 129× 97 grids, respectively.

5. SOLVER PERFORMANCE

5.1. Performance analysis

Newton’s method requires the solution of a large linear system of equations at each iteration.
Considering the test case with a 65× 49 grid and four �ow variables at each cell, the total
number of variables is 13 200 and the Jacobian matrix has 174× 106 elements. Keeping this
huge matrix requires around 3GB memory, and the solution of such a matrix at each iteration
takes an extremely long computer time. An e�cient solution of a linear system of equa-
tions will improve the performance of the solver signi�cantly. In this study, the UMFPACK
sparse matrix solver package is used to minimize the storage and factorization costs. In the
�rst-order upwind discretizations, a �ve-point stencil produces �ve 4× 4-block bands. A full
matrix solver requires the storage and solution of the whole matrix, including zeros; with
UMFPACK the performance of the solver can be improved signi�cantly. After eliminating
the unnecessary zero entries, the size of the matrix drops to 2–3MB and a large reduction in
CPU time is achieved.
The use of a diagonal term addition and Jacobian matrix freezing is investigated to improve

the e�ciency of the solver. Deciding when to remove the diagonal term and to freeze the
Jacobian matrix is very important to obtain the best performance of the solver. The perfor-
mance of the solver is measured as the CPU time to obtain a converged solution with a
speci�ed maximum density residual tolerance: 1:0× 10−5 for single precision and 1:0× 10−13
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for double precision. The time-like term is removed when the �t value given by Equation
(19) reaches �trm, and the Jacobian matrix is frozen when the average density residual reaches
to Rfrz. In order to get the best performance in each run, a trial–error study is performed to
determine the values of �trm and Rfrz. This study shows that there is no single value for �trm,
but the value of Rfrz can be �xed as 1:0× 10−2 for single precision, and 1:0× 10−4 for double
precision. Although the number of iterations may increase with the use of Jacobian freezing,
the CPU time spent for the converged solution decreases when skipping the Jacobian calcu-
lation. With these trial–error procedures, the best combinations of parameters for removing
the diagonal terms and freezing the Jacobians are found, and these parameters are used in
the performance analysis of Newton’s solver. In this section, the performance of Newton’s
method is demonstrated for the same geometry and �ow condition used in Section 4. In the
solution of Newton’s method, �ow variables are initialized with the free-stream solution.

5.2. Test case results

In this part of the study, the accuracy of numerical Jacobians on the convergence of
Newton’s method is studied. The convergence histories with analytical and numerical
Jacobians are compared for the �rst-order Steger–Warming scheme. Numerical Jacobians are
obtained with di�erent perturbation magnitudes. The convergences with optimal and other
perturbation magnitudes are compared. Forward and backward di�erence schemes are used
for numerical Jacobian calculations, and the convergences with these schemes are compared.
Computations are performed with both single and double precisions in order to see the e�ect
of computer precision on the convergence of the solver. In Table III and Figure 5, the per-
formances of the solver with analytical and numerical Jacobians are compared. The following
observations have been made in relation to the performance of the solver with numerical
Jacobians. In computations with single precision, the perturbation magnitude signi�cantly af-
fects the solver’s convergence. The convergence of Newton’s method with double precision is
less sensitive to the perturbation magnitude. Although the speed of the analytical method may
not be reached, the converged solution with the least CPU time is always obtained with optimal
perturbation magnitudes, which corresponds to 7× 10−4 for single precision and 4× 10−8 for
double precision. With the optimal perturbation magnitude, the convergences with analytical
and numerical Jacobians are almost identical. Using a forward or backward di�erence scheme
in numerical Jacobian calculations does not signi�cantly a�ect the convergence of the solver.

Table III. E�ects of perturbation magnitude on convergence history with Steger–Warming discretization.

CPU time (s) Number of iterations

Precision Jacobian Forward Backward Forward Backward �trm Rfrz

Single Analytical 642.98 24
Num. �=7× 10−3 Diverged Diverged Diverged Diverged
Num. �=7× 10−4 2793.12 2098.23 24 24 3 10−2

Num. �=7× 10−5 Diverged Diverged Diverged Diverged

Double Analytical 469.76 26
Num. �=4× 10−4 3916.30 3998.25 27 28
Num. �=4× 10−8 3868.71 3919.83 26 26 3 10−4

Num. �=4× 10−12 3856.80 4059.56 27 28
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Figure 5. E�ects of perturbation magnitude on convergence history using Steger–Warming discretization:
(a) single precision; and (b) double precision.

Table IV. E�ects of grid size on convergence history with Steger–Warming discretization.

Grid size Jacobian CPU time (s) Number of iterations �trm Rfrz

33× 25 Analytical 12.33 11
Num. �=4× 10−8 25.24 11 1.5 10−4

65× 49 Analytical 469.76 26
Num. �=4× 10−8 3868.71 26 3 10−4

129× 97 Analytical 63201.34 218
Num. �=4× 10−8 535129.62 218 6 10−4

Results show that with double precision the maximum density residual can be reduced to the
order of 10−15, while with single precision the same residual converges to only an order of
10−6. The CPU times of the runs with single and double precisions are in the same order
of magnitude. Thus, the computations with double precision signi�cantly improve the order of
convergence without a�ecting CPU time considerably. A trial–error study using the analytical
Jacobians shows that removing the time-like term after �t value reaches three gives the best
performance.
In order to determine the e�ects of grid size on the performance of the solver, the pre-

vious parametric study is realized for di�erent grid sizes. The convergences of the solver
with the analytical and numerical Jacobians are compared with three di�erent grid sizes of
33× 25; 65× 49, and 129× 97. Numerical Jacobians are obtained with forward di�erencing
using the optimal perturbation magnitude value of 4× 10−8. The computations are performed
with double precision. Table IV and Figure 6 show that identical convergence histories are
obtained with the analytical and numerical Jacobians. By using the di�erent number of grid
points, e�ects of the size of linear systems on the performance of the solver are also analysed.
It is observed that CPU time increases signi�cantly with grid size. The increase in CPU time
is mainly related to the increase in the number of iterations. It is observed that change in
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Figure 6. E�ects of grid size on convergence history using Steger–Warming discretization.

grid size does not a�ect the memory requirement signi�cantly. With the present size of the
linear system, the CPU and memory requirements are in an acceptable range. However, for
much larger systems, especially in 3-D problems, the direct solution of sparse matrices may
not be very e�cient. In this case, iterative solvers, such as Krylov methods, may be more
appropriate [18]. As given in Table IV, although the value of �trm increases with the grid
size, the value of Rfrz remains the same.
The performance of Newton’s method is evaluated for di�erent �ux splitting schemes. The

�rst-order Steger–Warming, Van Leer and Roe schemes are used for �ux calculations. The
bene�ts of using the same �ux calculation scheme for both Jacobian and residual calculation
are analysed. The convergences of the �ow solver with analytical Steger–Warming Jacobians,
and Van Leer and Roe discretized residuals are compared. Again, the appropriate values of
parameters for removing the diagonal terms and freezing the Jacobian matrix are used to re-
�ect the best performance of the solver. The numerical Jacobians are calculated using forward
di�erencing, and the calculations are realized with double precision. The performance analysis
with the Steger–Warming scheme has already been studied in Table IV and Figure 5(b). The
e�ects of using Van Leer and Roe �ux splitting schemes on the convergence of Newton’s
method are analysed in Table V and Figure 7. It was observed that with their own numerical
Jacobians, the Steger–Warming scheme has the fastest convergence in terms of both iterations
and CPU times, and the Roe scheme is the slowest one. Figure 7 shows that using di�erent
schemes in Jacobian and residual calculations makes the solver performance worse. Van Leer
or Roe residuals with Steger–Warming analytical Jacobians converge much more slowly than
Van Leer or Roe residuals with their own numerical Jacobians. The Roe residual with its nu-
merical Jacobians converges in 55 iterations, while with the use of Steger–Warming analytical
Jacobians the convergence is possible after 250 iterations. However, considering Table V, the
convergence with analytical Jacobians still requires less CPU time with respect to numerical
Jacobians. In the solutions with Van Leer and Roe schemes, the number of iterations and
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Table V. E�ects of perturbation magnitude on convergence history with Van Leer and Roe discretizations.

Scheme Jacobian CPU time (s) Number of iterations �trm Rfrz

SW analytical 803.33 56
Num. �=4× 10−4 4607.94 32

Van Leer Num. �=4× 10−8 4559.52 32 3 10−4

Num. �=4× 10−12 4593.69 33

SW analytical 3549.57 257
Num. �=4× 10−4 8296.57 56

Roe Num. �=4× 10−8 8202.54 55 5 10−4

Num. �=4× 10−12 8268.18 58
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Figure 7. E�ects of perturbation magnitude on convergence history using Van Leer and
Roe discretizations: (a) Van-Leer scheme; and (b) Roe scheme.

CPU times to obtain converged solutions are expected to be much smaller if the analytical
Jacobian and residual calculations use the same schemes. Results also show that the value of
�trm changes with the �ux calculation scheme, but the value of Rfrz remains the same.
The e�ects of higher-order schemes on the performance of Newton’s solver are studied.

The second-order Steger–Warming, Van Leer and Roe schemes are used for �ux calculations.
The Van Albada limiter is implemented in the extrapolation of the �ow variables. Again,
the numerical Jacobians are calculated using forward di�erencing and double precision. The
convergences of the solver with analytical and numerical Jacobians are compared. In the solu-
tions with analytical Jacobians, Jacobians are based on the �rst-order Steger–Warming scheme,
and discretized residuals are based on the second-order Steger–Warming, Van Leer and
Roe schemes. In the solutions with numerical Jacobians, the second-order Steger–Warming,
Van Leer and Roe schemes are used in both Jacobian and discretized residual calculations.
Numerical Jacobians are calculated with di�erent perturbation magnitudes. To get a better
convergence, the appropriate values of parameters for diagonal term addition and Jacobian ma-
trix freezing are used. Figure 8 shows the convergence histories of the solver with
di�erent second-order schemes. Results show that the numerical Jacobians with optimal
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Figure 8. E�ects of perturbation magnitude on convergence history using 2nd order discretizations:
(a) Steger–Warming scheme; (b) Van-Leer scheme; and (c) Roe scheme.

perturbation magnitudes always give the best convergence. In all three �ux calculations, the
maximum residual reduction can be achieved with numerical Jacobians and optimal pertur-
bation magnitudes. Compared to the �rst-order schemes, the second-order schemes are more
sensitive to perturbation magnitude. Results also show the advantages of using the same �ux
calculation scheme for both Jacobian and residual calculations. When the �rst-order analytical
Steger–Warming Jacobians are used with the second-order Steger–Warming, Van Leer and
Roe discretized residuals, convergence becomes very slow. It is expected that if the analytical
Jacobians are evaluated by using the same second-order schemes used in residual calcula-
tions, the CPU times and the number of iterations to obtain converged solutions will decrease
signi�cantly. However, obtaining analytical Jacobians using second-order schemes may not be
easy. So, numerical methods o�er advantages for calculating Jacobians that may be di�cult
or impossible to generate analytically. In general, a convergence problem is observed in the
second-order schemes, which may be due to the nature of the �ux limiter employed in the
�ow solver. The performances of each run with the second-order discretization are analysed in
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Table VI. E�ects of perturbation magnitude on convergence history with 2nd order discretizations.

Scheme Jacobian CPU time (s) Number of iterations �trm Rfrz

SW analytical 11814.16 600+
SW Num. �=4× 10−6 42874.08 600+

Num. �=4× 10−8 32931.64 190 64 10−4

Num. �=4× 10−10 32949.47 197

SW analytical 9590.41 600+
Van Leer Num. �=4× 10−6 Diverged Diverged

Num. �=4× 10−8 34368.53 202 128 10−4

Num. �=4× 10−10 43040.22 600+

SW analytical 11710.3 600+
Roe Num. �=4× 10−6 Diverged Diverged

Num. �=4× 10−8 37770.02 220 192 10−4

Num. �=4× 10−10 37479.44 214

Table VI. In all three �ux calculations, the CPU times of the runs with optimal perturbations
are nearly the same. However, a convergence in the order of 10−14 can be achieved only
using the Steger–Warming scheme.

6. CONCLUSIONS

A Newton’s method was developed for 2-D Euler equations. Upwind �ux splitting schemes
were used in the �nite-volume discretization. The Jacobian matrix was calculated using both
analytical and numerical methods. The sources of error in numerical Jacobians were anal-
ysed. An optimization method was developed to minimize the error in numerical Jacobian
calculations. The performance of Newton’s method with numerical Jacobians was analysed.
The convergence histories and CPU times of Newton’s method with analytical and numerical
Jacobians were compared. The e�ects of evaluating numerical Jacobians with di�erent per-
turbation magnitudes on the convergence of Newton’s solver were studied. The convergence
histories of the solver with di�erent �ux calculation schemes were analysed.
The �nite-di�erence perturbation magnitude is one of the most important parameters that

a�ects the accuracy of numerical Jacobians. As a function of computer precision, there is
an optimal perturbation magnitude at which numerical Jacobians can be calculated with
minimum error. The optimization method developed in this study is easy to use and it
can accurately predict the optimal perturbation magnitude for numerical Jacobian evaluations.
Numerical Jacobians obtained with optimal perturbation improve the convergence of
Newton’s method. Computer precision is another important parameter that a�ects the accuracy
of numerical Jacobians. Computations with double precision signi�cantly improve the accuracy
of numerical Jacobians. Evaluating Jacobians with the numerical method may require longer
execution time. In order to reduce this execution time, �ux vectors with perturbed �ow vari-
ables can be calculated for only related neighbouring cells. Using the same �ux scheme for
both Jacobian and residual calculations improves the convergence of the solver. Calculation
of the Jacobian numerically keeps the Jacobian consistent with the residual vector. Therefore,
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numerical Jacobians have advantages, especially in higher-order discretizations in which ob-
taining analytical Jacobians is more di�cult. In the case of starting from a poor initial con-
dition, the time-like term addition to the matrix diagonal improves the convergence of the
solver in early iterations. Jacobian freezing may be another useful strategy for decreasing the
execution time. In the solution of large linear systems of equations, the sparse matrix solver,
UMFPACK, signi�cantly reduces memory requirements and CPU time.
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